
AFRL-VA-WP-TM-2006-3009

COMPUTATIONAL FLUID DYNAMICS
(CFD) MODELING AND ANALYSIS
Delivery Order 0006: Cache-Aware Air Vehicles
Unstructured Solver (AVUS)

MGNet
8 South Street
Cos Cob, CT 06807-1618

Dr. Craig C. Douglas
Yale University

Adam F. Zornes
University of Kentucky

AUGUST 2005

Final Report for 01 January 2005 – 31 August 2005

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

AIR VEHICLES DIRECTORATE
AIR FORCE MATERIEL COMMAND
AIR FORCE RESEARCH LABORATORY
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

NOTICE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site
(AFRL/WS) Public Affairs Office (PAO) and is releasable to the National Technical
Information Service (NTIS). It will be available to the general public, including foreign
nationals.

PAO Case Number: AFRL/WS-06-0092, 10 Jan 2006.

THIS TECHNICAL REPORT IS APPROVED FOR PUBLICATION.

/s/ /s/
______________________________________ __________________________________
VICTOR S. BURNLEY REID MELVILLE, Chief
Project Engineer Computational Sciences Branch

/s/

DOUGLAS C. BLAKE, Chief
Aeronautical Sciences Division
Air Vehicles Directorate

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

August 2005 Final 01/01/2005– 08/31/2005
5a. CONTRACT NUMBER

F33615-03-D-3307-0006
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

COMPUTATIONAL FLUID DYNAMICS (CFD) MODELING AND ANALYSIS
Delivery Order 0006: Cache-Aware Air Vehicles Unstructured Solver (AVUS)

5c. PROGRAM ELEMENT NUMBER
0602201

5d. PROJECT NUMBER

A00G
5e. TASK NUMBER

6. AUTHOR(S)

Dr. Craig C. Douglas (Yale University)
Adam F. Zornes (University of Kentucky)
 5f. WORK UNIT NUMBER

 0D
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

MGNet
8 South Street
Cos Cob, CT 06807-1618

Yale University

University of Kentucky

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL-VA-WP Air Vehicles Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7542

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

 AFRL-VA-WP-TM-2006-3009
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

PAO Case Number: AFRL/WS-06-0092, 10 Jan 2006.

14. ABSTRACT

The Air Vehicles Unstructured Solver (AVUS) is a three-dimensional (3-D) flow simulator running on unstructured grids.
Embedded in the simulator is a sparse matrix package for solving coupled partial differential equations. Unstructured grid
solvers usually do not exhibit optimal computer memory access patterns. The purpose of this report is to detail the
memory access patterns and provide a roadmap for improving it.

15. SUBJECT TERMS

CFD, cache memory, computational performance, unstructured meshes

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

 16

 Victor S. Burnley
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255- 4305

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

 1

1 Task Objective
The objective of this delivery order is to improve the cache performance of
the computer code AVUS.

1.1 Background

AVUS is a three-dimensional (3-D) flow simulator running on unstructured grids.
Embedded in the simulator is a sparse matrix package for solving coupled partial
differential equations. Unstructured grid solvers usually do not exhibit optimal computer
memory access patterns. This project will determine the memory access patterns and
provide a roadmap for improving it.

 2

2 Description of Work

The following summarizes the activity / work accomplished during the period of January
1 to August 31, 2005 by the principal investigator Dr. Craig C. Douglas and his graduate
student Adam Zornes.

A tutorial, Cache-aware Algorithms and PDE Libraries, on using computer cache
memory subsystems was presented by Craig Douglas on May 18, 2005 at Wright-
Patterson Air Force Base to the Computational Sciences Branch of the Air Vehicles
Directorate. The presentation covers how the caches are organized and what is
required to use caches effectively.

Years ago, knowledge of the number of floating point multiplies used in a given
algorithm (or code) provided a good measure of the running time of a program. This
was a good measure for comparing different algorithms to solve the same problem. This
is no longer true. Many current computer designs, including the node architecture of
most parallel supercomputers, employ caches and hierarchical memory architecture.
Therefore, the speed of a code (e.g., multigrid) depends increasingly on how well the
cache structure is exploited. The number of cache misses provides a better measure for
comparing algorithms than the number of multiplies. Unfortunately, estimating cache
misses is difficult to model a priori and only somewhat easier to do a posteriori.

Typical multigrid applications are running on data sets that are much too large to fit into
the caches. Thus, copies of the data that are once brought into the cache should be
reused as often as possible. For multigrid, the possible number of reuses is always at
least as great as the number of iterations of the smoother (or rougher), plus the residual
correction before correction steps. Suitable fixed and adaptive blocking strategies for
both structured and unstructured grids must be introduced. Both types of cache-aware
algorithms use a fixed, given percentage of the cache.

Fixed algorithms use fixed blocks of the unknowns (or subdomains) that are
determined in a preprocessing step. Adaptive algorithms use a moving active set of
unknowns that should be in cache and can be reused. Once an unknown has been
completely updated for k iterations, it leaves the active set.

The cache-aware algorithms improve the cache usage without changing the underlying
algorithm. In particular, bitwise compatibility is guaranteed between the standard and
the high-performance implementations of the algorithms. This is illustrated by
comparisons for various multigrid algorithms on a selection of different computers for
problems in two and three dimensions.

To apply cache-aware principles to the code AVUS, it is first necessary to read the
actual code, find the relevant parts, and start profiling running examples once the code
has been built on suitable platforms. The techniques we intend to introduce should be
fairly portable. One aspect that we had not expected is that AVUS is built using a pair of
scripts that are tied to certain commercial compilers on specific platforms. We do not

 3

have access to these compilers and have had to produce variants of the scripts just to
get started on compiling and running AVUS.

We have successfully built and run AVUS on two platforms: a Xeon 64-EMT-based PC
cluster and an Itanium

2
-based shared-memory HP Integrity Superdome. The code was

profiled to find the routines that need to be considered for cache-aware algorithms.

The compilation is driven by the script make_avus. One must configure options for the
platform on which compilation is to be done. The script then builds and links
executables for the desired platform and options. The main option is single or double
precision. Double precision in the default. The make_avus script first checks to see if
the ParMetis library has been built for the desired platform. If not, it calls another script,
make_metis, to build the desired library. After the library has been established, the
make_avus script checks to see if the .f sources have been built for the desired platform
and are up to date. If not, they are built and saved in the objects directory en mass.
When the .f sources have been built, a few other sources are built and then all are
linked together with the ParMetis library to create the executable, which is saved in the
bin directory.

The compilation scripts must be modified to allow for profiling. This involves adding the
correct options for compilation (specific to each compiler) for producing profiling output.
This must be done both in the make_avus and make_metis scripts, and sources must
be rebuilt accordingly.

Execution is generally done through a .job file. This file sets several environment
variables (including executable location and calling sequence), creates and input file
for the program, and calls the program execution script. The execution script is
AvusRUN. This first moves various files to the correct locations as set by the .job file.
The script then runs the executable and tidies up by moving output files to a location
set by the .job file and destroying temporary files.

To correctly collect profiling data, some aspects of the execution process must be
modified. This may include altering the AvusRUN script to not remove temporary files
and may also entail some other changes to the script.

The first step in profiling was to run AVUS under gprof, a relatively simple profiler. We
then had statistics on how much time was spent in each of the routines in the overall
code. This is helpful in determining where the code spends most of its time on a single
processor. A complete gprof output for one of examples starts at about 70 pages of text,
which we omit and will provide to the program manager electronically.

The top 15 routines are shown in Table 1.

 4

Table 1: Primary Routines Based on gprof Statistics

% Time Cumsecs Seconds Calls Msec/Call Name
14.7 0.25 30.24 6 5040 Ucm6
12.2 55.28 25.04 5 5008 Karl6sc
9.7 75.28 20.00 1 20000 Poorgrd
8.4 92.56 17.28 1 17280 Orderpt
6.6 106.08 13.52 5 2704 Dfdqi6sc
6.2 118.72 12.64 5 2528 Lhslusc
5.9 130.80 12.08 5 2416 Dfdqv6sc
4.7 140.48 9.68 6 1613 Riemann
3.2 146.96 6.48 40 162 Hunter
3.0 153.04 6.08 5 1216 Dfdqt6sc
2.3 157.76 4.72 6 787 Slip
2.0 161.92 4.16 6 693 Grad6
2.0 166.00 4.08 5 816 Vflux6
1.7 169.52 3.52 5 704 Preset6sc
1.4 172.32 2.80 5 560 Posi

Ucm6 constructs left and right face values of primitives. Poorgrd compute a mask
array for the one-sided least-squares gradient construction at each face. the mask
array is ‘good’ and it is initialized to true in subroutine zero. A neighbor cell not truly
one-sided will cause a false entry in the appropriate location in the array. Orderpt
removes redundant points from each face to ensure that each edge is composed of
two points and is shared by two faces of any given cell in three dimensions. It also
orders points around the perimeter of each face.

Karl6sc is the parallel symmetric Gauss-Seidel iterative solver. It communicates
twice per iteration with neighbors. Riemann solves a Riemann problem at every
face using the exact Riemann solver of Gottlieb and Groth.

Most of the rest of the routines are used to construct Jacobians by computing fluxes or
enforcing boundary conditions or positivity requirements. Anything that passes through
data once only is not a candidate for improving cache reuse unless the routines can be
combined so that fewer passes are made through the same data. In particular,
Poorgrd, Orderpt, and Hunter are not candidates for improvement since on very large
data sets they use relatively little time.

A more sophisticated profiler is the HPCToolkit developed at Rice University. It has the
capability to profile multiple processor codes on platforms that are supported by the
Performance Application Programming Interface (PAPI), which was developed at the
University of Tennessee at Knoxville. We are in the process of building scripts that will
allow us to extract highly detailed runtime statistics on the performance of AVUS.
Unfortunately, writing the scripts is time consuming, tedious, and not automated. When
completed, the scripts will be useful after the project as AVUS evolves over time.

 5

In the case of multiple processors, the grid is automatically reordered to take
advantage of locality. This is not done automatically in the single processor case.
However, a program called Blacksmith may be run to reorder the grid before starting
AVUS. This causes a significant drop in the time spent per iteration.
AVUS is spending most of its time generating the problems it has to solve, not on
solving these problems. One of the principal iterative solvers, a block symmetric Gauss-
Seidel, performs two major communications exchanges every iteration. This algorithm
needs to be modified in order to be cache efficient. One possibility is to eliminate some
of the communication by switching the algorithm to a more traditional Schwarz
alternating method that runs multiple steps of Gauss-Seidel locally.

Schwarz procedures solve local (domain decomposed) sub-problems to some level
of accuracy. There are two variants of interest:

1. Additive: all sub-problems are solved in parallel. Data is exchanged between sub-
problems for overlapping data (if any) in parallel, too.
2. Multiplicative: each sub-problem is solved sequentially. Data is exchanged only
between sub-problems that have an update pending.

The additive form is most suitable for parallel processing. There are multilevel variants
as well, e.g., multigrid within each sub-problem versus domain decomposition within a
global multigrid procedure. I prefer the latter, but the domain decomposition
community prefers the former.

The advantage of an additive Schwarz procedure for AVUS is that the symmetric
Gauss-Seidel procedure can be modified to be cache-aware. Currently, there are two
parallel communications of sub-domain boundary data per iteration. Several complete
iterations can be done instead before communication. Switching to a natural order
Gauss-Seidel will make it even easier to add cache-aware algorithms devised either by
my group or the one of Ulrich Ruede in Erlangen (both our groups have cooperated on
a number of joint papers). Many papers can be found in the MGNet preprint web page.

Keeping the right-hand sides and the matrix values together in memory in one structure
seems to make a modest improvement in cache locality. For 3-D problems, this is not
always the case, however. In a large application, it may be better to have the right-hand
side in two places depending on what it is needed for. Copying the data makes sense if
there will be many iterations of the Gauss-Seidel solver.

Another approach is to do a domain decomposition style Gauss-Seidel solver within
each Schwarz sub-problem, where the domains now are localized to the size of the
usable part of cache. Jonathan Hu wrote a Ph.D. dissertation on how to do this for
multigrid on a single processor for unstructured grids. Danny Thorne wrote a Ph.D.
dissertation on how to do this for multigrid on a single processor for structured,
adaptively refined grids. Both dissertations are available in the ML-DDDAS web page,
http://www.mgnet.org/~douglas/ml-dddas.html. Codes can be provided as examples of
how to develop such codes. Both students’ codes fall in the category of research codes.
A newer, production level code that works well in both environments is slowly being

 6

written by the researchers in their spare time.

A significant idea in Hu’s dissertation is to study the adjacency matrix C=(cij) of cache-
bound subdomains. These matrices are square and the size of the number of cache
blocks used to solve a problem. If cij= cji>0, then cache blocks i and j transfer data
between each other. Trying to minimize the number of nonzeroes will reduce
computational time. If the cij represent how many pieces of data have to be transferred
from block i to j, minimizing the cij as well will have an impact on cache reusability.

Studying the techniques employed by either Hu or Thorne will take a significant amount
of time.

 7

3 Profiling AVUS with the HPCToolkit

To simplify the process of profiling AVUS with the HPCToolkit, the .job files and the
AvusRun script have been combined with other HPCToolkit commands and options in a
single script, hpc_script.

At the beginning of the script, there are a number of variables that must be defined.
These are listed and discussed Table 2. Below this, the input file is created and the
AvusRun script is concatenated. Alterations have been made, and as of now there is
support for Linux platforms only. Support for other platforms can be added as needed.

The process for analyzing AVUS with the HPCToolkit involves five steps. The first step
is to determine the loop structure of the binary executable file using bloop. Next, the
executable is run under hpcrun with various optional events defined in the variable
HPCRUN_EVENTS. After this has been done, the output files produced by hpcrun are
analyzed by hpcprof. These files are then all combined by hpcquick into a database
viewable by either hpcviewer or a web browser. Finally, the results may be viewed.

A number of variables may be defined in the script. Table 2 lists those variables and a
short description of each. For proper execution, all path names should be fully
qualified, not relative.

Table 2: HPC_SCRIPT Variable Definitions

Variable name Description
AVUSLOC the directory of the AVUS executable
SCRATCH the directory to use for execution of the AVUS
 script
MPI_EXEC the command to invoke a program under MPI,
 including any options
JOBLOC the directory from where the script should be
 run
INPUT the directory and name of the AVUS input file
OUTPUT the directory and name of the AVUS output file
 to be created
PRECISION the precision to use for AVUS, single or double
GRID the directory and name of the AVUS grid file
INTERSECTION the directory and name of the AVUS
 intersection file
RESTART the directory and name of the AVUS restart file
NEW_RESTART the directory and name of the AVUS restart file
 to create
PIX the directory and name of the AVUS pix file

 8

TAP_LOCATIONS the directory and name of the AVUS tap
 locations file
SHUTDOWN the directory and name of the AVUS shutdown
 file to be created
MOVIE_TAP the directory and name of the AVUS movie tap
 file to create
B1_TRIP the directory and name of the B1 trip file to

create
BOUNDARY_CONDITIONS the directory and name of the boundary

conditions file
OVERWRITE the overwrite flag, overwrite or nooverwrite
OS_TYPE the operating system (OS) used; currently only

Linux is supported

Table 3 contains definitions of the relevant variable used by the HPCToolkit. See the
web site http://www.hypersoft.rice.edu for further information about the HPCToolkit.
There are many options which are described in detail in various manual pages for the
individual components of the HPCToolkit. The site contains tutorials for an earlier and
largely incompatible version of the software.

Table 3: HPCToolkit Variable Definitions

Variable name Description
BLOOP_FILE_NAME the name for the bloop output file to be created
BLOOP_OPTIONS options for running bloop
EXE the directory and name of the executable to be

run
EXE_ARGS arguments used by the executable
HPCPROF_OPTIONS options for running hpcprof
HPCRUN_EVENTS events to be taken note of by hpcrun (a

complete list of events that can be profiled can
be obtained by executing the command hpcrun –
L)

HPCRUN_OPTIONS options for running hpcrun
HPCRUN_OUTPUT_FILE prefix for output from hpcrun
OUTPUT_DIR the directory to place output
SRC_DIRS the directories where the source code for the

executable may be found

Z_OR_X determines the format of output from hpcquick,
XML or HTML using -x or -z respectively

 9

4 Sources of Future Cooperation

The program manager has computer access to our work through accounts on
www.mgnet.org (a Mac Mini running Mac OS X 10.4) and hpc1c.csr.uky.edu (a Centos
4.1 based Itanium

2
HP workstation). HPCToolkit is installed and functional on hpc1c.

Should the program manager need to run simple examples in parallel in our
environment, we will issue logins on hpc1d and hpc1e. I expect that the program
manager will have questions about how to deal with Schwarz alternating procedures
and some of the sophisticated cache-aware algorithms that Jonathan Hu and Danny
Thorne devised as part of their Ph.D. dissertations. I expect to continue cooperating
with the program manager after the formal end of the project on an informal basis,
including answering questions related to this final report.

